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Quantitative reasoning’s emergence as a foundation for students’ mathematical development has 
generated a need for supporting teachers’ capacity to teach for such reasoning. In this paper, we 
discuss a meanings perspective on working with prospective and practicing teachers in order to 
support their constructing meanings that foreground quantitative reasoning. Our meanings 
perspective, referred to as competing meanings, involves a problematization of extant meanings, 
the construction of alternative meanings, and a critical comparison of each. Here, we present 
our perspective and informing theories. We also draw on our empirical work to provide tangible 
and research-based examples of our competing meanings perspective.  

Keywords: Cognition, Preservice Teacher Education, Teacher Knowledge, Learning Theory. 

Students’ quantitative reasoning refers to the ways in which students conceive of and reason 
with measurable attributes constituting some phenomenon or context (Smith III & Thompson, 
2007; Thompson, 2011; Thompson & Carlson, 2017). Addressing number concepts, fractional 
reasoning, proportional reasoning, algebraic reasoning, rate of change concepts, and function 
concepts (e.g., Karagöz Akar et al., 2022; Steffe & Olive, 2010; Thompson & Carlson, 2017), 
researchers have identified quantitative reasoning as a bedrock for students’ mathematical 
development. These same researchers have highlighted that the various factors influencing 
students’ educational experiences do not sufficiently engender or support students’ quantitative 
reasoning. Whether with respect to improved curricular materials, continued knowledge 
development, or targeted pedagogical practices, a pressing need is better understanding how to 
prepare teachers in supporting their students’ quantitative reasoning. 

Over the past decade-plus we have engaged in a research program to understand not only 
students’ quantitative reasoning, but also that of prospective and practicing teachers. Our primary 
research emphasis has been understanding the relationship between teachers’ mathematical 
meanings and their quantitative reasoning, including how to engender teachers’ quantitative 
reasoning so that it might be leveraged to support shifts in their meanings. We have specifically 
sought to support shifts reflecting those meanings identified by researchers as critical for K-16 
students’ mathematics. We report on a perspective for supporting such shifts in this paper. 

We term our perspective competing meanings due to its simultaneous focus on teachers’ 
extant meanings, the meanings we seek to engender and center when working with teachers, and 
interactions between those meanings we seek to provoke. In what follows, we first provide 
background theory that informs our perspective including Piaget’s epistemology (Piaget, 2001), 
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Thompson’s theory of meaning and quantitative reasoning (Thompson, 2016; Thompson & 
Carlson, 2017), and Harel’s notion of intellectual need (Harel, 2013). Drawing on those 
informing theories, we outline the perspective of competing meanings as it relates to working 
with teachers, whether prospective or practicing. We support an operational approach to 
competing meanings by also providing a tangible example of it, both in the context of task 
design and research participant themes. We close with potential implications and future work by 
drawing specific attention to areas of theory left to flesh out or connect with.  

Informing Theory and Background 
Our perspective is informed by Piaget’s genetic epistemology, including von Glasersfeld’s 

(1995) extension of it. We focus here on the constructs of assimilation, perturbation, 
accommodation, and equilibration, and we point the reader to Dawkins et al. (2024) for an 
extensive collection of Piaget’s theory in mathematics education. Assimilation is the process by 
which an individual conceives a present experience via their current conceptual structures (von 
Glasersfeld, 1995). It is a constructive process that shapes an experience so that it affords and is 
constituted by those structures. In some cases, assimilation to extant conceptual structures results 
in an unexpected experience, which engenders a state of perturbation (von Glasersfeld, 1995). A 
perturbation can stem from several causes. For one, an individual might obtain an unexpected 
result after enacting a conceptual structure, thus yielding a sense of perplexity. As another 
example, in enacting a conceptual structure, an individual might become aware of some 
experiential feature that leads to their questioning the efficacy or relevance of that structure.  

Having experienced a perturbation, an individual engages in activity to reconcile that 
cognitive state. One form of reconciling a perturbation involves affective and coping responses, 
such as anxiety leading to disengagement (Tallman & Uscanga, 2020). Another form of 
reconciliation is that of accommodation, which can take on several forms. To name a few, the 
conceptual structure used in assimilation could be modified, an alternative conceptual structure 
could be enacted, or a novel conceptual structure could be constructed (von Glasersfeld, 1995). 
Regardless, accommodation is an act of learning via the elimination of a perturbation through a 
cognitive construction or reorganization. It often entails sustained, and effortful, cognitive 
engagement. Piaget hence referred to the process of accommodation as one of equilibration that 
establishes a cognitive state of equilibrium (von Glasersfeld, 1995). 

In service of operationalizing the aforementioned Piagetian constructs, Thompson introduced 
the intertwined theories of quantitative reasoning (Thompson, 2011) and meaning (Thompson, 
2016). With respect to the latter, Thompson’s (2016) theory of meaning is rooted in Piaget’s 
genetic epistemology and refers to an organization of operations, images, and other meanings. As 
it relates to the act of teaching, Thompson’s theory of meaning is connected to that of Silverman 
and Thompson (2008), who outlined a developmental process that spans the construction of 
personalized knowledge to the transformation of that knowledge to incorporate student meanings 
and pedagogical implications. That is, Silverman and Thompson recognized the importance of 
teachers’ mathematical meanings including teachers’ construction of key developmental 
understandings, which are understandings critical to the development of coherent and generative 
mathematical concepts (Simon, 2006). Before using Thompson’s theory of quantitative reasoning 
to further illustrate this perspective, we note that the perspective emphasizes mathematical 
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knowledge as a dynamic, in-the-moment implicative base of knowing for action, as opposed to a 
static, declarative base of knowledge for action (Liang, 2021; Thompson, 2016). 

Thompson’s (2011, 2012) theory of quantitative reasoning provides one framework for 
situating Piaget’s genetic epistemology, meaning, and key developmental understandings. 
Quantitative reasoning is reasoning that involves conceiving situations in terms of measurable 
attributes (i.e., quantities) and relationships between those attributes (i.e., quantitative 
relationships). Quantitative relationships form the basis for the construction and abstraction of 
mathematical objects (Moore et al., 2022; Smith III & Thompson, 2007). Covariational 
reasoning is a particular form of quantitative reasoning that involves constructing and 
coordinating quantities that vary in tandem (Carlson et al., 2002; Saldanha & Thompson, 1998; 
Thompson & Carlson, 2017). A growing number of researchers have identified important 
nuances in student and teacher thinking in this area (see Karagöz Akar et al., 2022 for a 
collection of contributions and researchers). Using the framework by Carlson et al. (2002), one 
meaning entailing covariational reasoning involves assimilating a situation via directional and 
amounts of change relationships. For instance, Ellis et al. (2015) explored students’ meanings for 
exponential relationships in the situation of (magic) plant growth and the quantities height and 
time. The students’ meanings involved their constructing the directional covariation of quantities 
(e.g., as time increases, height increases), and coordinating additive changes in one quantity with 
multiplicative changes in the other (e.g., as time increases additively, height increases by 
increasing amounts while preserving a constant ratio for a constant time period). Here, the 
operations constituting the meaning for exponential relationships involve conceiving the 
variation in each quantity, coordinating those two variations to construct and compare changes in 
each, and considering how the constructed covariational relationship is relevant to different 
contexts (e.g., a growing plant, a Cartesian graph, or a table). 
 

 
 

Figure 1: Students’ coordinating height and time (Ellis et al., 2015, pp. 143, 147, and 149) 

Our work is also informed by Harel’s (2013) intellectual need. We use intellectual need to 
clarify the perturbations targeted by our competing meanings perspective. Harel defined 
intellectual need as “a perturbational state resulting from an individual’s encounter with a 
situation that is incompatible with, or presents a problem that is unsolvable by, his or her current 
knowledge” (2013, p. 122). Importantly, Harel’s intellectual need refers to a state of perturbation 
that affords learning, and is thus not merely a state of confusion. A researcher is positioned to 
claim an individual has experienced an intellectual need when the meanings needed to reconcile 
an experienced perturbation are within the individual’s zone of proximal development, whether 
that development be in the context of reasoning or domain practices (Harel, 2013; Weinberg et 
al., 2023). With respect to the work here, intellectual need orients us toward not only seeking to 
engender perturbations, but also having in mind the ways in which teachers’ available reasoning 
can act as an asset in reconciling that perturbation. Furthermore, intellectual need draws our 
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attention to forms of perturbations that promote their reflective comparison of meanings that 
caused the perturbations and those that reconciled those perturbations.   

In summary, Piaget’s and von Glasersfeld’s framings of knowing provide us guiding 
cognitive mechanisms. Thompson’s perspective on meaning, with Silverman, Thompson, and 
Simon’s descriptions of how meanings inform teaching, further clarify our attention to the ways 
an individual’s personal meanings may be organized and transformed so that they are generative 
and flexible during the act of teaching. Theories of quantitative and covariational reasoning 
provide us concrete constructs by which to specify and differentiate mathematical meanings. 
Lastly, Harel’s notion of intellectual need aids us in clarifying the type of perturbations we seek 
to engender with teachers. Namely, we focus on perturbations that necessitate the enactment of 
alternative meanings to reconcile them (i.e., equilibration via accommodation). Furthermore, we 
focus on the transformative learning experiences that occur when a process of equilibration is 
accompanied by a subsequent perturbation that motivates reflectively comparing meanings.  

Competing Meanings 
Our competing meanings perspective identifies one form of learning via particular forms of 

intellectual need and, hence, perturbation and accommodation. Stated generally, the competing 
meanings perspective includes an individual experiencing a problematized extant meaning; 
enacting an alternative meaning; and, through additional processes of perturbation and 
accommodation, comparing the extant meaning and alternative meaning (Figure 2). 
 

 
 

Figure 2: The competing meanings perspective 

A problematized extant meaning first occurs via an act of assimilation that engenders a 
perturbation and an intellectual need for an alternative meaning. Then, via enacting that 
alternative meaning, the individual reconciles their perturbation with respect to the task situation 
associated with the initial perturbation. Critical to the competing meanings perspective is that a 
subsequent state of perturbation then occurs. Whereas the initial intellectual need was respect to 
the goal-oriented activity of the task, a subsequent round of intellectual need is created at the 
level of meanings; the individual becomes perplexed as to why their extant meaning results in a 
perturbation while the alternative meaning does not. The disparate nature of the meanings is thus 
at the root of the perturbation and associated intellectual need. By disparate, we mean that, in 
that moment, the individual infers that their two held meanings entail important differences and 
incompatibilities that are not trivial to resolve. This perplexity positions the individual to take 
each meaning as an object of thought and hold them against each other (i.e., competing 
meanings) in order to reconcile that perturbation. Yet an additional intellectual need might result 
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from this process, motivating the individual to explore the implications of that reconciliation, 
particularly if the alternative meaning is novel and viewed as a potentially more productive 
meaning. We return to this point in the closing of the paper.  

To situate and illustrate the perspective, we start with an abstract and abridged example. 
Consider a hypothetical student or teacher, who we name Blinder. For a particular concept, 
Blinder has constructed a meaning that we denote by Ma (we remind the reader that a meaning 
might be composed by a system of meanings), which has served as productive throughout his 
schooling experience. Entering our class or professional development, we might intend, for a 
variety of reasons, that Blinder construct an alternative meaning. We denote this alternative 
meaning by Mb. In working with Blinder, we determine that he holds meaning Ma and that 
meaning Ma and Mb are disparate; Ma is not a foundational way of thinking for Mb and, in fact, 
can inhibit the construction of and ability to teach for Mb. This raises the question: how do we 
engage with Blinder in a way that honors Ma and affords constructing Mb? This is a situation we 
have been presented with frequently in research, teaching, and professional development settings 
with students and teachers (e.g., Moore, Stevens, et al., 2019; Tasova, 2021). 
Using Linearity to Illustrate the Competing Meanings Perspective 

Consider linear relationships as an example topic to contextualize the abstract presentation 
above. Our work has adopted a quantitative reasoning perspective to center a meaning for linear 
relationships that involves constructing a constant rate of change. A constant rate of change 
between two quantities means that as the quantities’ magnitudes covary, their amounts of change 
exist in a proportional relationship. For any arbitrary change x (e.g., ∆x), y changes by a scaler 
factor m of that change (e.g., m⋅∆x). If that arbitrary ∆x is then scaled by a factor c, the change in 
y is scaled by the same factor, yielding a corresponding change in y of c⋅m⋅∆x. This is a critical 
and productive meaning (i.e., Mb), yet our and others’ work with teachers and students suggest 
that this is not always a typical meaning (Byerley & Thompson, 2017; Lobato et al., 2003; 
Moore, Silverman, et al., 2019; Thompson & Thompson, 1996; Zaslavsky et al., 2002). 
 

 
 

Figure 3: (a) Two graphs of y = x and (b-c) two graphs of y = 3x. 

A common extant meaning (i.e., Ma) for linear relationships is shaped-based (Ellis & 
Grinstead, 2008; Moore, 2021; Moore, Stevens, et al., 2019; Nagle & Moore-Russo, 2013; 
Zaslavsky et al., 2002), which entails reasoning about linear relationships in terms of properties 
of slope like movement and direction in association with learned formulas (e.g., (y2 – y1)/( x2 – 
x1)). These associations are forms of declarative knowledge, as opposed to symbolizing 
abstracted covariational relationships. An example of this is an individual comparing the visual 
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steepness of two lines to conclude the former has a greater rate of change than the latter (Figure 
3a). As another example of this meaning, an individual could conceive Figure 3b as having an 
incorrect rise-and-run and Figure 3c as a negative slope or rate of change because of its 
downward, left-to-right direction (Moore, Silverman, et al., 2019; Moore, Stevens, et al., 2019).  

Returning to the question raised above, in working with individuals holding a shape-based 
meaning, Ma, as their dominant meaning, we intend to both honor those shape-based meanings 
while determining how to support their constructing a rate of change meaning, Mb. Our goal is 
also to support their constructing Mb so that it becomes a meaning they view as important and 
productive (for them and their students), and more so than that of the shape-based meaning. 
Before describing an approach that draws on the competing meanings perspective, we recognize 
one way to support Mb is to use tasks in which Ma is not relevant, but Mb is. Similarly, one might 
use tasks that target Mb through focused, closed-ended questions and design. In our experience, 
such tasks are useful to engender Mb and possibly draw connections with Ma. Yet, such tasks can 
be so contrived as to feel too disjoint from the classroom for teachers. Relatedly, those tasks do 
not problematize Ma and generate an intellectual need for Mb so that the latter becomes their 
predominant or habitual meaning. With respect to teachers, for the tasks they envision teaching, 
Ma remains just as relevant, is more familiar or habitual, and is often more cognitively efficient. 
Our solution to this issue is to use tasks that not only afford or target Mb, but also draw the 
meanings Ma and Mb into competition with each other. Doing so requires that the task is designed 
so that Ma is still relevant to the task. Furthermore, we intend the enactment of Ma to lead to a 
conclusion that not only invites further thought, but that also stands in opposition to the 
conclusion derived from enacting Mb. This underscores the competing aspect of competing 
meanings. The initial perturbation should not leave the teacher viewing Ma as entirely 
problematic or unrelated, as it is through viewing Ma as still relevant despite some perturbation 
that the individual is positioned to compare its viability against that of Mb. 

We use the graph in Figure 3b to illustrate how we have attempted to target the cognitive 
process in Figure 2 and draw meanings into competition with each other in the context of linear 
relationships. When working with teachers, we present this task in two parts. We first provide the 
graph as illustrated in Figure 3b, but without the axes-labels “x” and “y”. We explain that a 
student provided the graph (without labels) as a solution to graphing “y = 3x”, and we ask them 
to consider how the student might have been thinking. After the teacher has exhausted the 
number of ways they can hypothesize as to how the student might have been thinking (see 
Moore, Silverman, et al., 2019 for examples), we then provide Figure 3b with “x” and “y”. We 
explain that the student added the labels to clarify their solution. We ask the teacher to comment 
on the graph, and we conclude the task asking how they would respond to the student as their 
teacher. We note that Figure 3c is created by most teachers when making sense of the solution 
due to their rotating the graph to horizontally orient x. If the teacher does not rotate the graph, we 
rotate the graph and ask them to consider it in that orientation, as well.  

The task incorporates the competing meanings perspective by using the following principles: 
(a) it sensibly affords assimilation to Ma and Mb; (b) in the event that Ma is enacted, it is likely to 
result in a perturbation, but still be viewed as relevant to the task; (c) in the event that Ma 
engenders a perturbation, Mb is likely available to the student or within their zone of proximal 
development; (d) the enactment of Mb can reconcile a perturbation stemming from Ma; (e) the 
teacher has the opportunity to reflectively compare the affordances and constraints of Ma and Mb; 
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and, critically, (f) the teacher is likely to perceive the task, Ma, and Mb as relevant to their 
instruction. Relating these task features to the cognitive account in Figure 2, (a) and (b) occasion 
problematizing an extant meaning; (a), (c), and (d) relate to accommodation via the enactment of 
an alternative meaning; and (b), (d), (e), and (f) support reflecting on and comparing extant and 
alternative meanings. Furthermore, the task embodies the competing aspect of competing 
meanings by using a situation in which Ma and Mb yield sensible, yet different conclusions. 
Enacted as is, Ma results in classifying the solution and its rotated version (Figure 3c) as 
inaccurate representations of y = 3x (e.g., the “slope” is wrong in Figure 3b and 3c), while Mb 
affords accepting both as accurate (e.g., each is the set of points so that y is three times as large 
as x and for any change in x, y changes by three times that amount). This in-the-moment 
incompatibility aids comparing the generativity and generalizability of each meaning including 
weighing which is better viewed as derivative of the other (e.g., slope as an implication of rate of 
change is more generative and generalizable than rate of change as an implication of slope).  
Data Illustrations 

Although this is chiefly a theoretical report focused on a particular form of learning and 
cognitive activity, it represents generalizations from a collection of empirical studies with 
students and teachers. The studies and their methodologies entailed semi-structured clinical 
interviews (Ginsburg, 1997) and various forms of teaching experiments (Steffe & Thompson, 
2000), and are summarized in Moore et al. (2022) and Moore et al. (2024). Here, we draw from 
our empirical data with prospective teachers working the aforementioned task.  

We use Table 1 to provide emblematic examples of each competing meanings component 
presented in Figure 2. Due to space constraints, we use quotes and only a brief narrative situating 
those quotes. We point the reader to our work referenced above for more detailed narratives of 
the students’ actions and meanings. With respect to a problematized extant meaning, the example 
quote is from a participant, Lizzie, who conceived Figure 3b as having a “positive slope” and 
Figure 3c as having a “negative slope” due to their direction of rise and run (i.e., Ma). For both 
graphs, Lizzie checked points to verify the accuracy of the formula y = 3x. This, when paired 
with the slope discrepancy between the given and rotated graph, left her perturbed and calling 
into question the viability of her thinking on the task (“this is so annoying”). With respect to 
enacting alternative meanings (i.e., Mb), Tatiana’s quote illustrates that by conceiving the graph 
via quantitative and covariational operations, she determined the graph to be a viable 
representation of y = 3x. This occurred after having not determined what was to her a satisfactory 
way to produce the unlabeled graph. In attributing a viable way of reasoning to the student 
solution, it also supported her reflecting on that meaning in terms of its flexibility. This is a key 
foundation for the reflective comparison of meanings.  

The problematization of an extant meaning can occur in a reflexive process with the 
enactment of alternative meanings. Similarly, the phenomenon of reflectively comparing extant 
and alternative meanings does not always immediately follow that process. It more often occurs 
iteratively across a sequence of tasks. With that said, the provided quote is from Ada and it 
occurred after engaging in several tasks across an instructional sequence. It illustrates that by 
comparing extant and alternative meanings, she came to view rate of change as a dominant 
meaning. She conceived slope as a visual property (i.e., Ma) derivative of and thus subordinate to 
rate of change (i.e., Mb). This enabled her to consider a graph like that in Figure 3c as having a 
rate of change of 3 and, hence, a positive slope. Furthermore, she could couch her appraisal of 
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the graph in terms of differentiating between the underlying mathematical concept of rate of 
change and common communicative practices (i.e., conventions). Such appraisals are critical to 
learning mathematics (Moore, Silverman, et al., 2019). As the participant Thomas described 
when privileging rate of change, “it’s smart [of a student] to understand that it’s not glued.” 
 

Table 1: Quotes Associated with each Competing Meanings Component 
 

Component Graph 
Considered 

Quote 

Problematized 
Extant Meanings 

Figures 3b-c 
(with labels) 

Lizzie: I’m rising this three…then I’m running negative 
one…the slope is negative again…this is so annoying. 

 
Enacting 

Alternative 
Meanings 

 
Compare Extant 
and Alternative 

Meanings 

 
Figure 3b 

(with labels) 
 
 

Figure 3c 
(with labels) 

 
Tatiana: Oh…we have a clever kid over here…so it now 
technically is y equals three x…not the standard way of 
doing it…They see the relationship between x and y.  
 
Ada: …even though it looks like a negative slope…we 
call it slope because it’s visual and it’s easy to visualize a 
negative and positive slope. But that’s only visual on our 
conventions of how we set it up…slope is rate of change, 
we can still see that for like equal increases of x we have 
an equal increase of y of three. And so for equal positive 
increase of one we have an equal positive increase of 
three. And so, it is a positive slope. 

 

Closing 
We presented one learning form that identifies how two meanings might be brought into 

comparison via processes of assimilation, accommodation, and perturbation. We illustrated how 
such a process involves different forms of intellectual need, including that with respect to solving 
a task, comparing meanings, and considering the implications of those meanings. We also 
illustrated the competing meanings perspective through a task and emblematic participant 
activity. The competing meanings perspective is still in its infancy as a construct. Moving 
forward, we envision a need for further connecting to other extant constructs and perspectives, 
the results of which will continue to shape and develop the idea of competing meanings.  

We have concentrated much of our research focus on the first two aspects competing 
meanings and relatively less on the nuanced ways in which teachers compare extant and 
alternative meanings (cf. Paoletti, 2020). A reflective comparison of meanings is a 
developmental process that occurs across a sequence of experiences, and it is through such a 
process that key developmental understandings are constructed and associated pedagogical 
implications are anticipated (Silverman & Thompson, 2008; Simon, 2006). We envision a fruitful 
area of inquiry to be more detailed investigations into how the competing meanings perspective 
might be used to engender such reflective comparisons and, accordingly, the construction of key 
developmental understandings. Furthermore, we view a need for further relating this process to 
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the development of mathematical knowledge for teaching. Here, we do not make strong claims 
regarding the development of mathematical knowledge for teaching. There are numerous factors 
other than a teacher’s knowledge that mitigates their instructional practices and the meanings 
they target in their classroom. But, literature identifies the critical role of meanings and teachers 
being reflectively aware of them (Liang, 2019, 2023; Tallman & Frank, 2020; Thompson, 2016), 
and the competing meanings perspective is one potential tool to support the transformation of 
knowledge to that which informs instructional action.  

For the purpose of adhering to the space constraints of the current report, we situated our 
work in the theories that directly informed its emergence and development. There is significant 
literature on learning, conceptual change, and perturbation, and thus an additional need is to 
further situate the notion of competing meanings within that literature. For example, Vinner and 
Dreyfus (1989) proposed compartmentalization as the phenomenon in which a learner has two 
potentially conflicting meanings. Noah-Sella et al. (2022) have since extended this phenomenon 
to incorporate Thompson’s theory of meaning and explore calculus students’ integral meanings. 
Their perspective foregrounds cases in which a researcher perceives a potential conflict or 
relationship between meanings, but the participant does not. The competing meanings 
perspective might contribute a way by which one considers how to support a student or teacher 
in bringing that conflict to the surface. As another example, researchers have productively 
pursued characterizing learning using Piaget’s forms of reflective abstraction (Ellis et al., 2024; 
Simon et al., 2010; Tallman & O’Bryan, 2024), including theorizing its role in constructing 
mathematical knowledge for teaching (Liang, 2021, 2023). We envision that drawing 
connections with this work will provide insights into how aspects of the competing meanings 
perspective are related to crucial abstraction processes.  
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