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Within the line of work on students’ quantitative reasoning, researchers have alluded to the 
significance of time in constructing covariational relationships. I draw on this body of literature 
and return to Piaget’s perspective on time to provide a framework for the role of time in 
students’ (co)variational relationships. The framework also clarifies the nature of the 
multiplicative objects underlying students’ (co)variational relationships. In support of 
illustrating the framework and capturing its emergence from building second-order models of 
students’ mathematics, I also describe a task and how its design reflects the framework.  
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Time has long been a topic of contemplation for researchers and philosophers, and 
ontological and epistemological considerations of time are certainly not restricted to the 
academy. Kant (1781/2003) considered time to be so ubiquitous as to be given a priori. Differing 
from Kant, Piaget viewed time as a concept an individual constructs. Accordingly, Piaget 
dedicated several studies to developing conceptual models of that construction (e.g., Piaget, 
1954; Piaget, 1970). Based on his findings, Piaget proposed that the mental operations involved 
in constructing time are inseparable from space, motion, and objects (Piaget, 1970; von 
Glasersfeld, 1984). Building on researchers who have alluded to covariational reasoning being 
connected to time, I return to Piaget’s (1970) conceptual models for time to further develop the 
role of time in students’ (co)variational reasoning. In doing so, I elaborate on the constructs of 
experiential time and conceptual time (Castillo-Garsow, 2012; Thompson & Carlson, 2017) to 
provide a framework for characterizing students’ (co)variational reasoning in relation to concepts 
of time. Reflecting its empirical roots, I illustrate the framework by describing a task designed to 
provide insights into the role of time with respect to students’ (co)variational reasoning.  

Covariational Reasoning and Time 
The connection between motion, variation, and the concept of time has been indicated within 

work on students’ covariational reasoning (e.g., Ellis et al., 2020; Johnson, 2015b; Paoletti & 
Moore, 2017; Patterson & McGraw, 2018; Stalvey & Vidakovic, 2015; Thompson & Carlson, 
2017). Covariational reasoning—defined as the cognitive activities involved in reasoning about 
how quantities vary in tandem (Carlson et al., 2002; Saldanha & Thompson, 1998)—is an 
emergent area of research within the landscape of quantitative reasoning. Researchers exploring 
covariational reasoning have illustrated its importance for the learning of concepts spanning 
middle, secondary, and undergraduate mathematics (Byerley & Thompson, 2017; Carlson & 
Oehrtman, 2004; Ellis, 2011; Ellis et al., 2015; Johnson, 2015a, 2015b; Moore, 2014; Paoletti et 
al., 2023; Thompson et al., 2017), with other researchers identifying its broader importance in 
STEM (Gantt et al., 2023; Rodriguez et al., 2019; Sokolowski, 2020; Yoon et al., 2021). 

With respect to relationships between time and covariation or function, researchers have 
primarily focused on time as a parameter (Keene, 2007; Kertil et al., 2019; Paoletti & Moore, 
2017; Patterson & McGraw, 2018; Stalvey & Vidakovic, 2015; Trigueros, 2004). These 
researchers have focused on the extent to which time is held implicitly or explicitly in mind by 
students as they construct and reason about relationships between quantities. For instance, 
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Patterson and McGraw (2018) explored student meanings in the context of dynamic situations 
and their graphing quantitative relationships that did not include elapsed time as a graphed 
quantity. Relatedly, Paoletti and Moore (2017) explored how graphing experiences with 
quantitative relationships not explicitly involving elapsed time can create an intellectual need for 
time as a parameter. Taking a different approach, Stalvey and Vidakovic (2015) focused 
explicitly on students constructing relationships between elapsed time and two other quantities, 
and then their subsequent construction of a relationship between those two quantities. 

Some of the aforementioned studies drew on notions of conceptual and experiential time, 
which Castillo-Garsow (2012) and Thompson (2011, 2012) introduced to characterize students’ 
(co)variation. Having roots in Piaget’s (1970) framing of time and Newtonian mathematics 
(Thompson, 2012), conceptual and experiential time are akin but not identical to explicit and 
implicit parametric distinctions. Whereas parametric distinctions focus on time as a distinct 
quantity, conceptual and experiential time are organic to quantities’ (co)variation. Rather than 
framing time as implicit or explicit attribute in and of itself, time is framed as an emergent, 
intrinsic property of (co)variation that differs based on the (co)variation conception. Thompson 
(2012) described experiential time as “felt time that [passes]” in an experience, while conceptual 
time is part of the “flowing” of quantities and “Not time on a clock, but an imagined, smoothly 
changing, quantified time—a measured duration that grows in extent” (p. 147). The distinction 
between experiential and conceptual time is situated in how a phenomenon’s attributes are 
conceived, reflecting Piaget’s (1970) distinction between intuitive time and operational time. 

Linking Piaget’s Cognitive Account of Time and Covariation 
 “We are far too readily tempted to speak of intuitive ideas of time, as if time, or for that 

matter space, could be perceived and conceived apart from the entities or the events that fill it” 
(Piaget, 1970, p. 1). Piaget considered time to be an emergent property of the co-ordination of 
simultaneous positions and the co-ordination of successive, spatial states. He referred to these 
co-ordinations as simultaneity and succession (with displacement), respectively, with their 
development occurring in the context of motions with different velocities. Piaget’s view of 
time’s link to conceptions of space and motion reflects his stance that concepts arise from the 
coordination and abstraction of mental actions. To Piaget, our temporal experience and memory 
of a situation are constructions subject to mental actions. We transition from intuitive to 
operative conceptions of time as we develop ways for organizing our experience that foreground 
operative forms of thought over experiential or figurative forms of thought (Piaget, 1970).  

 
Figure 1. Piaget’s co-seriation model of events, simultaneity, and succession. (Piaget, 1970, p. 264) 

Piaget (1970) formalized the construction of simultaneity and succession of events as a 
grouping (i.e., co-seriation) shown Figure 1. O# represents the initial state of event # (e.g., an 
attribute of an object/phenomenon like position in visual field, weight, or color). A#, B#, C#, and 
so on represent successive states of event #. a, a', b', c', and so on represent durations such that b 
= a + a', c = b + b', and so on. Piaget used  to link states of events occurring simultaneously 
(e.g., an object’s weight and height), which can be thought of as a null vector due to the events’ 
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simultaneity. Piaget’s (1970) model captures the multiplicative basis of co-seriation, in which 
events are united to form a multiplicative object—the cognitive uniting of attributes so that an 
object is simultaneously all of them (Inhelder & Piaget, 1964). As I illustrate below, constructing 
such an object is fundamental to the covariation of quantities (Saldanha & Thompson, 1998). 

Drawing on Piaget’s model of time and the simultaneity and succession of events, I present 
three conceptual models of time as it relates to an individual’s conception of a phenomenon that 
entails quantities’ magnitudes varying (e.g., ||x||, ||y||, ||z||,…). The first model (Figure 2a) conveys 
a conception tied to experiential time. The second and third models (Figure 2b-c) each convey a 
conception tied to conceptual time. The second foregrounds the quantities as conceived with 
respect to elapsed time, while the third involves disembedding the quantities from the 
phenomenon and elapsed time so that they exist in an invariant relationship with each other. 

 
Figure 2. Conceiving a phenomenon and quantities (a) with respect to experiential time, (b) with respect to 

conceptual, elapsed time, and (c) so they are disembedded with respect to time and understood in terms of their 
invariant relationship.  

Adopting expression notation and restricting the focus to two quantities, we can represent 
Figure 2a, Figure 2b, and Figure 2c with ||"||!!⋁	||%||!!, (||"||!⋁||%||!), and (||"||∆⋀||%||∆), 
respectively. I use ||"||!!⋁	||%||!! with ⋁ (OR) and no parentheses to indicate that when a 
phenomenon and its constituent quantities are conceived with respect to experiential time, the 
quantities are both understood as present and varying in experience. They are observed to co-
occur, but they are not cognitively linked beyond that. A conception of their relationship 
involves sequentially recalling and possibly, but not necessarily, comparing the intuitive, in-the-
moment experience of each quantity’s variation. This is captured by the weak link between ||x|| 
and ||y|| in Figure 2a and foregrounding experiential time, te, with each quantity’s variation. 

I use (||"||!⋁||%||!) and (||"||∆⋀||%||∆) to indicate a phenomenon and its constituent 
quantities conceived with respect to conceptual time, whether elapsed (t) or their relationship 
disembedded and understood with respect to variation (Δ) from another state. With respect to 
(||"||!⋁||%||!), I use parentheses to indicate that the quantities are understood as occurring 
simultaneously, but I use ⋁ to indicate that elapsed time is the driver of the relationship such that 
each quantity exists in a multiplicative object with elapsed time but not with each other. The two 
quantities are related through their sharing a relationship with elapsed time. This is captured by 
the link between ||x|| and ||y|| in Figure 2b, which is stronger than that in Figure 2a but mitigated 
by the connection to elapsed time. With respect to (||"||∆⋀||%||∆), I use ⋀ (AND) and 
parentheses to indicate that the quantities are understood as occurring simultaneously and 
persistently. One quantity’s magnitude is held in mind with the “immediate, explicit, and 
persistent realization that, at every [magnitude], the other quantity also has a [magnitude]” 
(Saldanha & Thompson, 1998, p. 298). The quantities’ magnitudes are the driver of the 
relationship, and thus properties of the relationship are understood as defining the multiplicative 
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object formed by joining the two quantities’ magnitudes and thus are sustained irrespective of 
elapsed time or figurative aspects of experience. This is captured by the link between ||x|| and ||y|| 
in Figure 2c, which indicates their simultaneous and persistent co-existence so that their 
covariation is defined precisely by their simultaneous variations. Figure 2b and Figure 2c each 
indicates a bi-directional relationship between states to reflect the operational nature of 
conceptual time (Piaget, 1970). Figure 2c indicates measured durations fade to the background 
so the relationship is not tied to any particular experience or measured duration.  

Illustrating the Framework - Time and Task Design 
The task illustrated here emerged during a teaching experiment with undergraduate 

mathematics education students as part of a larger project focused on capturing middle grades 
and undergraduate students’ reasoning within dynamic situations (see Liang and Moore (2021), 
Lee et al. (2019), Tasova and Moore (2020), and Moore et al. (2019)). With respect to the task 
below, the project team drew on two sources of inspiration beyond the second-order models of 
student thinking that emerged during the teaching experiment (Steffe & Thompson, 2000; 
Thompson, 2008). As one source, we drew on the tasks demonstrated by Saldanha and 
Thompson (1998) and Carlson et al. (2002) that involve covarying quantities other than time. 
Tasks that prompt students to construct graphs with respect to time make it difficult for a 
researcher to tease out whether the student is reasoning with respect to conceptual or experiential 
time (Thompson & Carlson, 2017). The task below includes two distances (i.e., magnitude bars 
that provide figurative material to enact quantitative and covariational operations) with no 
reference to elapsed time. Piaget’s (1970) aforementioned work on time provided the second 
source of inspiration for the task. Piaget described, “It is only by the co-ordination of at least two 
motions with different velocities that purely temporal relationships can be distinguished from 
spatial relationships or from intuitive ideas about motion” (p. 26). The task foregrounds relations 
of simultaneity and succession via prompting the participants to coordinate two objects in 
motion, with the two objects varying at different rates with respect to elapsed time. 

The Task: Which One? – Going Around Gainesville (GAG) 
  “Which One? – GAG” is from a series of tasks titled “Which One?” A “Which One?” task 

is designed to be implemented after a participant constructs a covariational relationship within 
phenomenon or a graphical representation (Liang & Moore, 2021). A “Which One?” task 
provides several representations of covariational relationships, including magnitude bar sets that 
vary simultaneously or a collection of static or dynamic graphs. With the representations 
provided, the researcher asks the participant which of the representations, from none to all, 
accurately capture the relationship they identified previously (whence the name, “Which One?”). 

 
Figure 3. The Going Around Gainesville (GAG) task, video at: https://youtu.be/v2yc55Z9WV8. 
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The part preceding “Which One? – GAG” involves a video depicting a car starting in Atlanta 
and traveling back and forth from Tampa (Figure 3, see Moore et al. (2022) and Moore et al. 
(2019) for empirical data). After viewing the animation, the participant is sequentially asked two 
graphing tasks (Figure 3). After a participant engages in each part and has constructed what the 
research team perceives to be a stable understanding of the covariational relationship, the 
researcher implements the three-part task “Which One? – GAG”. Each part consists of three 
pairs of magnitude bars presented in a dynamic geometry environment (DGE). As support for the 
reader, https://tinyurl.com/4v9ma7pc hosts videos illustrating each part and pair of the task. For 
Part I of the task (see Figure 4a for a snapshot), the participant is presented with three tabs, each 
containing a pair of magnitude bars. For each pair, one magnitude bar represents the distance 
from Atlanta (dfA) and one magnitude bar represents the distance from Gainesville (dfG). For 
each pair, the student can push “Drive” to start or stop the bars changing together, and the 
student can push “Reset” to return the pair to a zero-magnitude dfA and corresponding initial 
dfG. The participant is tasked with determining which, if any, of the pairs covary as to accurately 
capture the determined relationship between the dfA and the dfG. Table 1 describes the design of 
each magnitude pair. Pair B and C capture the normative relationship between the two distances. 

 
Figure 4. Example still shots for (a) Pair A – Part I, (b) Pair B – Part II, and (c) Pair C – Part III. 

Table 1. The design of “Which One? – GAG”. 

RELATIONSHIP DESIGN PART III 
Pair A: With respect to dfA: dfG decreases at an increasing rate, decreases at 
a decreasing rate, remains constant, increases at a decreasing rate, and then 
increases at an increasing rate. When Drive is pushed, with respect to 
elapsed time: (i) dfA increases at a decreasing rate, increases at an increasing 
rate, increases at a decreasing rate, increases at an increasing rate, and then 
increases at a decreasing rate. (ii) dfG decreases at a constant rate, remains 
constant, and then increases at a constant rate.  
Pair B: With respect to dfA: dfG decreases at a constant rate, remains 
constant, and increases at a constant rate. When Drive is pushed, with respect 
to elapsed time: (i) dfA increases at a decreasing rate, increases at an 
increasing rate, increases at a decreasing rate, increases at an increasing rate, 
and then increases at a decreasing rate. (ii) dfG decreases at a decreasing rate, 
decreases at an increasing rate, remains constant, increases at an increasing 
rate, and then increases at a decreasing rate.  

Pair C: With respect to dfA: dfG decreases at a constant rate, remains 
constant, and increases at a constant rate. When Drive is pushed, with respect 
to elapsed time: (i) dfA increases at a constant rate. (ii) dfG decreases at a 
constant rate, remains constant, and then increases at a constant rate.   
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Part II of the task (see Figure 4b for a snapshot) presents the same three pairs of magnitude 
bars, but they can reorient the magnitude bars, join then, and show a “link” between them. This 
link represents the process of joining two orthogonal magnitudes to form a Cartesian point. A 
participant is told that each pair matches its respective pair from Part I (e.g., Pair A in Part I, II, 
and III covary equivalently), and that Part II of the dynamic sketch is designed to help them 
further explore the extent the two magnitude bars capture the determined relationship between 
the two distances. For Part III of the task (see Figure 4c for a snapshot), the participant is again 
presented with the same three pairs of magnitude bars. In this case, each pair is oriented 
orthogonally, a Cartesian point is displayed, and a trace of the point is recorded as the magnitude 
bars covary. Like Part II, the participants are told that each pair matches its respective pair from 
Part I, and that Part III is to aid further exploring the extent the two magnitude bars capture the 
appropriate relationship between the two distances. During Part II and Part III, a participant is 
also prompted to reflect on and describe any changes in their assessment of the paired 
magnitudes. They can return to the previous parts if desired. They are also asked to reflect on 
difficulties from previous parts and how subsequent parts assist their assessment. Said frankly, 
Part I is intended to be difficult, both conceptually and in functional design, with the hopes of 
both eliciting their thinking and affording spontaneous requests for other representations. 

Connecting the Task to the Framework 
First focusing on Figure 2a (i.e., ||"||!!⋁	||%||!!), and reflecting quantities’ variations 

occurring in experiential time, a student reasoning in such a way attends to the variation of each 
magnitude separately, and they primarily do so through the experience of watching the DGE 
animated continuously using “Drive”. With respect to Pair A, the student might conclude that 
dfG varies appropriately due to its smooth decrease, constancy, and then increase, while 
concluding that dfA varies incorrectly. For the latter, they anticipate that dfA increase at a smooth 
rate, which reflects the manner in which it increases during the experience of watching the road 
trip animation. With respect to Pair B, and consistent with their response to Pair A, the student 
might conclude that dfG and dfA vary inappropriately due to anticipating both increases or 
decreases at smooth rates, again reflecting how they experience the variations with the road trip 
animation. With respect to Pair C, the student is likely to conclude that both dfG and dfA vary 
appropriately due to the smooth variation of each. Across all of the pairs, the student primarily 
focuses on each magnitude separately and draws on intuitive or experiential notions of rate to 
draw conclusions.  

For Figure 2b (i.e., (||"||!⋁||%||!)), due to the basis in conceptual time, a student reasoning 
in such a way attends to the variation of each magnitude separately, but they coordinate the 
variation of each using successive durations of elapsed time. This might be accomplished by 
stepping through states of the DGE and tracking the variation of each quantity with anticipated 
properties in mind. With respect to Pair A, as the student tracks through successive, equal 
duration states of the DGE, the student might conclude that although dfG varies by constant 
amounts, dfA does not vary by constant amounts and thus the magnitude bars do not capture the 
appropriate relationship. With respect to Pair B, the student might comment on the difficulty 
assessing the pair using the DGE and thus seek to step through the DGE state by state. Reflecting 
that the quantities are cognitively linked through their shared relationship with elapsed time in 
this form of covariation, the student might attempt to “Drive” the bars for equal durations of time 
and then compare the variations of the magnitudes to each other. With respect to Pair C, the 
student is likely to conclude that the pair covaries appropriately due to the smooth variation of 
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each, and they might further test this by using successive, equal durations of “Drive”. Across all 
of the pairs, the student coordinates each magnitude with equal durations in order to draw 
comparisons across the magnitudes. Because of this, Pair B can lead to a perturbation that stems 
from the student anticipating equal variations in each quantity for equal variations in duration 
due to the piecewise linear relationship between dfG and dfA. 

For Figure 2c (i.e., (||"||∆⋀||%||∆)), due to the basis in a disembedded invariant relationship, 
a student reasoning in such a way foregrounds coordinating a quantity’s variation with respect to 
the other quantity’s variation. Whether Pair A, B, or C, the student is likely to attempt to vary 
one quantity’s magnitude in a systematic way while tracking the variations in the other quantity’s 
magnitude. For instance, the student might use “Drive” to step dfA through successive, equal 
increases, and then assess the appropriateness of the pair by investigating whether the dfG 
magnitude follows the pattern of constant decrease, constant, and constant increase. A student 
engaging in such covariational reasoning might experience a perturbation stemming from the 
functionality of the DGE (e.g., it is difficult to use “Drive” to step through equal amounts of dfA 
increase), but they would not be significantly perturbed by how a single bar varies as the 
animation plays. They persistently foreground how the bars simultaneously covary, which can 
lead to expressing annoyance at Part I and motivating a need for Parts II-III and a graph. 

Closing 
The three forms of (co)variational reasoning differentiate (co)variation based on the role of 

time and, hence, the extent a multiplicative object is formed between the two quantities. The 
three forms invite questions regarding their developmental and hierarchical nature. The three 
forms emerged from work conducted primarily with undergraduate students, and I do not have 
second-order models of their developmental trajectory and relationships. I hypothesize the 
continued work by colleagues such as Ellis, Johnson, Lee, Paoletti, and Tasova will provide such 
insights. With respect to hierarchy, there is a relative increase in sophistication and generativity 
from Figure 2a to Figure 2c that is reflected in Piaget’s exposition of time, as well as Carlson, 
Castillo-Garsow, Saldanha, and Thompson’s descriptions of (co)variation. This relativeness is 
captured by Patterson and McGraw (2018), who described, 

We hypothesize that it is advantageous to be able to envision the covariation between two 
dynamically changing quantities and, to some degree, decouple this image of covariation 
from a unidirectional, experiential image of the passage of time. This process is essential 
for developing an understanding of an invariant relationship between two quantities and 
explaining how changes in one variable constrain changes in another variable. (p. 320) 

The authors hedge in their hypothesis, as the process of decoupling quantities’ covariation from 
experiential time is intrinsic to the form of covariation captured in Figure 2c and, more broadly, 
that suggested by Carlson, Castillo-Garsow, Saldanha, and Thompson. Constructing a 
multiplicative object between quantities’ magnitudes necessarily involves decoupling images of 
variation from experiential or specific passages of elapsed time. It is then that two quantities’ 
variations are taken as objects of thought and united so that an invariant relationship is 
constructed to constrain the two quantities’ simultaneous variations. Although the forms have a 
hierarchical nature, the implications of such remain an open question. This is particularly true as 
it relates to how the forms of (co)variation play a role in students constructing concepts in which 
covariational reasoning provides a foundation, such as rate of change and accumulation.  
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