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Within the body of work on students’ covariational reasoning, researchers have called 
for more explicit attention to the ways theoretical constructs are operationalized to 
develop characterizations of student thinking. Addressing this need, we outline how 
von Glasersfeld’s (1991) notion of re-presentation—the act of reconstructing 
something previously experienced in its absence—has informed our research program 
on students’ covariational reasoning. Specifically, we illustrate its multimodal use in 
framing claims regarding the extent a student has constructed a particular 
covariational relationship.  
INTRODUCTION 
Covariational reasoning refers to the mental operations involved in coordinating two 
quantities’ magnitudes or values as they vary in tandem (Thompson & Carlson, 2017). 
Students’ covariational reasoning remains a growing area of study due to researchers 
having illustrated its critical foundation for students constructing major algebra, 
function, calculus, and STEM concepts (Thompson & Carlson, 2017). Accordingly, 
researchers have provided a variety of models of student thinking, with each model 
entailing the use of theoretical constructs to make aspects of student thinking salient. 
For instance, Carlson et al. (2002) specified several mental actions associated with 
students’ covariational reasoning. Similarly, Ellis et al. (2020) and Johnson (2015) 
have each characterized nuances in the ways students reason about covariation.  
A by-product of growth in an area of study is that guiding theories and constructs 
become more or less noticeable as researchers develop more nuanced or detailed 
characterizations. For example, as researchers have developed more specified 
descriptions of the mental actions involved in students’ covariational reasoning, macro-
level constructs that focus on general properties or forms of reasoning have moved to 
the background. This progression is natural and often necessary, yet it has notable 
consequences (Tyburski et al., 2021). For one, it leaves unclear the ways in which 
macro-level constructs emerged and continue to inform research design or analysis. 
For another, it inhibits other researchers adopting the work for their own purposes. In 
a call to fellow researchers, Tyburski et al. (2021) argued these consequences 
negatively impact the accessibility of research to novice or outsider researchers. 
We respond to this call by identifying the ways von Glasersfeld’s (1991) notion of re-
presentation—the act of reconstructing something previously experienced in its 
absence—has informed our research program on students’ covariational reasoning. In 
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what follows, we first provide background information on re-presentation and students’ 
covariational reasoning. We then discuss the explicit ways in which re-presentation has 
emerged and informed our research. Namely, we have used re-presentation to consider 
and frame the viability of our claims regarding students’ covariational reasoning.  
RE-PRESENTATION 
von Glasersfeld’s notion of re-presentation emerged during his study of Piaget’s 
genetic epistemology and as a distinction relevant to object permanence (von 
Glasersfeld, 1991, 1995). Re-presentation refers to the ability of an individual to 
construct a visualized image of an object in the absence of the relevant sensory 
material. von Glasersfeld emphasized the hyphenated form of re-presentation for two 
primary reasons. As the first reason, the hyphenated form reflects that to both von 
Glasersfeld and Piaget, re-presentation is an active attempt to present again. Because 
re-presentation involves regenerating a past experience or concept in the absence of 
the relevant figurative material, it is subject to and defined by the ways of operating 
available to the individual at that moment. Re-presentation does not produce a copy of 
the previous experience or concept, nor is it a simple recall of the previous experience 
as with a ready-made picture. Relatedly, because re-presentation is an active process, 
a researcher should not presume that the operations involved in re-presentation are 
equivalent to those used during the initial experience. This is particularly true when a 
large duration of time separates the two. As the second reason, von Glasersfeld’s 
insistence on using the hyphenated re-presentation reflects his linguistics background. 
He desired to distinguish between re-presentation and representation. Whereas the 
former is a constructive process involving the enactment of conceptual structures, he 
defined the latter as something acting as a copy, a pointer, or something that stands in 
for something else (von Glasersfeld, 1995). For instance, one might say a displayed 
Cartesian line and the inscription “y = 3x” represent (without hyphen) a linear 
relationship, whereas a re-presentation (with hyphen) of a linear relationship involves 
enacting conceptual operations associated with the conceived relationship to regenerate 
associated figurative material. We expand on this example in the next section.  
Further emphasizing its importance for the construction of concepts, von Glasersfeld 
described re-presentation as one of the key drivers of abstraction and learning. He 
considered the re-presentation of objects and conceptual structures to enable the 
construction of hypothetical situations not available on an experiential or sensorimotor 
basis. In his words, re-presentation enables thought experiments, and through affording 
processes of abstraction “thought experiments constitute what is perhaps the most 
powerful learning procedure in the cognitive domain” (von Glasersfeld, 1995, p. 69). 
As an apropos example, Steffe and colleagues’ (Steffe & Olive, 2010) extensive 
research program on fractional reasoning illustrates that acts of re-presentation are 
inseparable from the construction of number and multiplicative reasoning.   
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MAGNITUDES, OPERATIONS, AND COVARIATION 
Research on covariational reasoning, or “reasoning about values of two or more 
quantities varying simultaneously” (Thompson & Carlson, 2017, p. 423), has primarily 
occurred within Thompson’s quantitative reasoning paradigm. Informed by von 
Glasersfeld’s radical constructivism and Piaget’s genetic epistemology, Thompson 
defined a quantity as a measurable attribute of some situation (Thompson, 1989). 
Reflecting the theory’s epistemological underpinning, Thompson emphasized that 
quantities and their relationships are cognitive constructions and thus idiosyncratic to 
the knower. Researchers have since adopted this perspective to develop insights into 
the quantities and covariational relationships students and teachers construct (see 
Thompson & Carlson, 2017 for a summary of this work). We focus on two aspects 
from this work in order to connect re-presentation to students’ covariational reasoning.  
Firstly, a fundamental distinction in Thompson’s theory is that between quantitative 
operations and arithmetic operations (Thompson, 1989). The former refers to the 
mental operations involved in constructing a quantity and associated amountness, 
while the latter refers to numerical operations that define or calculate a quantity’s 
measure or value. To clarify, consider using the inscriptions “2” or “6-4” to represent 
a measure or comparison between measures. Here, represent (no hyphen) is used in the 
sense of their standing in for or pointing to anticipated conceptual (quantitative) 
structures. Because re-presentation stresses the enactment of mental operations in order 
to reconstruct a conceptual structure (von Glasersfeld, 1995), re-presenting “2” 
involves reconstructing quantitative operations including creating and iterating a unit 
magnitude in the context of figurative material that permits those operations (e.g., a 
segment). With respect to the inscription “6-4”, an act of re-presentation involves 
reconstructing those same operations for “6” and “4”, and then reconstructing the 
operations involved in disembedding and measuring the magnitude by which the “6” 
length exceeds the “4” length (Thompson, 1989). Underscoring the difference between 
re-presenting operations and representing, we suspect the reader immediately 
understands “2” as representing the result of evaluating “6-4” without having to enact 
in re-presentation the operations represented by “6-4” or the additive difference of “2”.  
Secondly, Carlson et al. (2002) provided a framework of mental actions that specify 
several quantitative operations involved in covariational reasoning. For the purposes 
of this paper, we draw attention to direction of change and amount of change 
operations. Direction of change involves conceiving variation in one quantity’s 
magnitude in tandem with variation in another quantity’s magnitude. For instance, in 
the context of counter-clockwise circular motion from a 3 o’clock position, the height 
above the circle’s center increases as the arc length traversed increases (Figure 1).  
Here, the quantities’ magnitudes are paired while each quantity’s magnitude is 
compared across states via a gross comparison with its previous state. Amount of 
change involves further quantifying quantities’ covariation by systematically 
comparing the accumulation of each quantity. As an example, one can capture the arc 
length’s accumulation by constructing and iterating a unit arc length. Pairing height 
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with the arc length’s accumulation, the individual can construct and additively compare 
not only successive heights, but also the successive variations in height (Figure 1). 
Here, the variations in both quantities’ magnitudes are coordinated, with one quantity’s 
variation remaining equivalent in magnitude (i.e., equal, successive increases) while 
the variation in the other quantity’s magnitude is compared across states via a gross 
comparison (i.e., the increase is decreasing). We underscore that this illustration 
centers quantitative operations, magnitudes, and associated figurative material, as 
opposed to specified values, inscriptions representing those values, or arithmetic 
operations involving values. Each are critical for mathematical development and 
communication, but acts of re-presentation involve the reconstruction of the former. 

 
Figure 1: Direction of change (top) and amount of change (bottom). 

RESEARCH CONTEXTS 
This paper emerged from the empirical work of building accounts of student thinking 
in the context of major algebra, pre-calculus, and calculus ideas. The primary attention 
of this work has been understanding, engendering, and supporting students’ and 
teachers’ quantitative and covariational reasoning.  The work involved a series of 
teaching experiments with middle-grade, secondary, and undergraduate students and 
teachers. A teaching experiment is a qualitative design-based research methodology 
that involves constructing and testing hypothetical models of student thinking (Steffe 
& Thompson, 2000). Analytic methods of conceptual analysis (Steffe & Thompson, 
2000) in combination with generative and convergent coding (Corbin & Strauss, 2008) 
accompanied the teaching experiments. It was during the iterative execution and 
analyses of the teaching experiments that re-presentation emerged as a useful construct, 
and we point the reader to Stevens (2019), Liang and Moore (2021), and Moore et al. 
(2022) for specified accounts of and references to this empirical work and findings.  
RE-PRESENTATION AND CLAIM VIABILITY 
The initial need for re-presentation as an explanatory construct emerged when our 
research team noticed a similar phenomenon during a series of studies: a student had 
engaged in activity that strongly suggested their having constructed a stable 
understanding of some covariational relationship, but their actions during subsequent 
tasks suggested otherwise. For example, in exploring circular motion, we experienced 
students repeatedly producing diagrams consistent with Figure 1 along with the 
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appropriate verbal descriptions. The fluidity of their actions led us to believe they had 
constructed a sophisticated and stable covariational relationship. However, the student 
would experience difficulties when prompted to construct a Cartesian graph of the 
relationship, or to choose two segments that match the covariational relationship from 
a collection of varying segments. The difficulties occurred in two primary ways.  
In some cases, a student’s difficulty would occur when they attempted to return to and 
regenerate the original situation and relationship in the presence of a new task. As an 
example, a student named Lilly attempted to regenerate the relationship illustrated in 
Figure 1 when attempting to determine which two segments from a collection of 
varying segments captured the sine relationship (Figure 2). Illustrated in detail in Liang 
and Moore (2021), Lilly desired to use the displayed circle to regenerate the 
relationship she previously determined as “sine” so she could compare it with how 
chosen segment-pairs covaried. However, she experienced difficulty regenerating the 
relationship unless the researchers provided figurative material (e.g., marks to visually 
denote amounts of change) to support her in making quantitative comparisons. 

 
Figure 2: Choosing from six (red) varying segments (Liang & Moore, 2021, p. 300). 

 
Figure 3: The (a) task situation and (b-c) normative graphs. 

In other cases, a student would return to and regenerate the original situation and 
relationship without trouble, but the student would experience a difficulty regenerating 
a previously constructed relationship using the figurative material of a new task. As an 
example, after determining a covariational relationship in a situation and constructing 
a graph of that relationship by re-presenting the quantities’ covariation (Figure 3a-b), 
Moore et al. (2019) reported on a student abandoning the construction of the graph in 
an alternative Cartesian coordinate orientation (i.e., the axes swapped, Figure 3c). The 
student, Patty, experienced no issues regenerating the covariational relationship in the 
situation or using the initial coordinate orientation, but she perceived creating a graph 
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in the new coordinate orientation as requiring drawing it “right-to-left.” She claimed 
such a graph is “backwards” and must be incorrect because of that feature. 
The frequency of cases like these in tandem with the students’ experienced difficulties 
being sustained and significant led us to question the extent we could claim the 
students’ reasoning foregrounded covariational reasoning. In Lilly’s case, we 
perceived her difficulties in re-presenting the relationship in her previously 
experienced context to be a contraindication of such reasoning. In Patty’s case, her 
difficulties in re-presenting the relationship under a new coordination orientation were 
also a contraindication of such reasoning. We thus searched for a construct that could 
help us not only characterize each case, but also differentiate between them. 
We do not recall the first instance in which we came across re-presentation as a 
potential tool. But, it became clear that re-presentation would be a useful tool when a 
research team member was in the depths of her dissertation work and needed to 
distinguish between students’ uses of formulas as inscriptions capturing arithmetic 
rules between values or as symbolizing quantitative operations relevant to a dynamic 
geometric object (Stevens, 2019). Upon coming across re-presentation, our team 
returned to our data to engage in further rounds of conceptual analysis. In doing so, re-
presentation’s dual emphasis on the availability of figurative material and the 
reenactment of conceptual operations provided us a way to situate our claims regarding 
students’ reasoning so that we considered them viable. Here, our use of viable is 
compatible with Steffe and Thompson (2000). We consider a claim viable if it is both 
an adequate hypothetical account of student thinking and it is specified enough to 
convey both affordances and constraints in their reasoning.  

 
Figure 4: Varying the provided figurative material. 

Reflecting on the cases above and considering the dual emphasis of re-presentation, 
we can explore indications and contraindications regarding students’ covariational 
reasoning in two ways after a student has engaged in activity that we take as providing 
evidence of covariational reasoning. Firstly, as researchers, we can prompt a student to 
re-present their actions within the same context or phenomenon as previously 
experienced. Furthermore, we can vary the amount of figurative material provided to 
them. For instance, after a researcher has evidence a student has constructed the 
relationship consistent with Figure 1, during a subsequent task the researcher could 
prompt the student to reconstruct that relationship, and they could do so in a way that 
provides a range from a completed diagram to a blank sheet of paper (Figure 4). 
Returning to Lilly, when only provided a dynamic point on a circle, she could not re-
present her previously constructed relationship. But, when provided the collection of 
heights all at once, she was able to re-present her previously constructed relationship. 
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Secondly, we can prompt students to re-present their actions within a different (or 
series of different) context(s) or phenomenon(s). For instance, after a researcher has 
evidence a student has constructed a relationship in a phenomenon (e.g., circular 
motion or a road trip), the researcher could prompt the student to reconstruct that 
relationship within a variety of Cartesian orientations (e.g., Figure 3), alternative 
coordinate systems (e.g., polar coordinates), or number line situations (e.g., Figure 2). 
A researcher can also vary the amount of figurative material available in the new 
contexts or phenomenon. For instance, in moving to a different coordinate system (e.g., 
polar coordinates), a researcher may or may not provide a quantity’s variation 
partitioned (e.g., a marked grid). Such moves support a researcher in differentiating 
between a student’s understanding of a particular covariational relationship and their 
generalized understanding of the coordinate system’s quantitative structure. Returning 
to students like Patty, if a student considers drawing a graph “left-to-right” to be 
absolutely necessary, then no amount of figurative material would immediately support 
them in drawing and accepting a normative graph in the given orientation. On the other 
hand, in the original Cartesian orientation, Patty was able to re-present her relationship. 
Illustrating how re-presentation supports a researcher in situating their claims, Patty’s 
actions indicate that she had constructed a covariational relationship she could re-
present graphically, but her Cartesian graphing meanings entailed properties of 
movement that did not support her in doing so for a particular orientation.  
CLOSING COMMENTS 
von Glasersfeld’s notion of re-presentation enables a researcher to situate their claims 
regarding a student’s covariational relationship with respect to 1) the amount of 
figurative material necessary to re-present the relationship, 2) their ability to re-present 
the relationship in other contexts and phenomenon, and 3) a combination of the two. 
By designing task environments sensitive to these re-presentational framings, we can 
systematically pursue indications and contraindications of students having constructed 
particular covariational relationships based on their capacity to re-present those 
relationships. Importantly, adopting a re-presentation framing has increased our 
sensitivity to the properties and features that students abstract from their their initial 
construction of a quantitative or covariational relationship. This supported sensitivity 
underscores von Glasersfeld’s framing of re-presentation as a driver of learning. 
On the topic of learning, it is important to note that students’ re-presentational activity 
can and does change over time. What a student is able to re-present from one day to 
another might not be available to them at a later time. Likewise, what a student cannot 
re-present at one moment in time may become available to them in re-presentation at 
another moment in time. This phenomenon is inherent to the learning process and 
cognitive development (Steffe & Olive, 2010; von Glasersfeld, 1995), and it suggests 
that instruction and curricular materials should give direct attention to engendering and 
supporting cycles of students’ re-presentational activity. Not only is re-presentation a 
driver of abstraction, it is a precursor to meaningful symbolization, and thus it provides 
a foundational springboard to an individual’s mathematical development. By 
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responding to the call by Tyburski et al. (2021), we hope to not only provide insights 
into how re-presentation has emerged in our research, but also invite conversation 
about how it might inform the teaching and learning of mathematics more broadly.  
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